Главная страница
Поиск по модели:
  
Как подключить конвертер hdmi vga
Организация службы питания отеля с таблицами
Как пользоваться кофемашиной дольче густо крупс
 

Тригонометрическая интерполяция примеры решения задач на паскале

Сообщения без ответов Активные темы. Сеточная функция может задаваться совокупностью пар: Заметим, что можно провести бесчисленное множество "плавных" кривых, проходящих через заданное множество точек. Поэтому задача интерполяции в общей постановке не имеет единственного решения. Если в качестве интерполирующей функции выбрать алгебраический многочлен, степень которого связана с числом заданных узлов интерполяции на единицу меньше , решение задачи является единственным.

Воспользуемся сначала кусочным способом. В качестве интерполирующей функции выберем алгебраический многочлен k-й степени степень многочлена на единицу меньше количества узлов:. Запишем условия интерполяции 4. Следовательно, задача интерполяции также имеет единственное решение. При решении поставленной задачи предполагается, что исходная сеточная функция задана своими точными значениями, хотя класс задач, для которых используются такие функции, ограничен.

Имеются и другие формы записи интерполяционных многочленов. При большом числе узлов решение системы 4. Искомый интерполяционный многочлен можно построить, не решая этой системы. Многочлены могут быть построены так, чтобы в самой структуре формулы многочлена условие интерполяции учитывалось.

При решении задачи функциональной интерполяции и в ее приложениях требуется:. При этом можно использовать многочлены Лагранжа или Ньютона, а также формулу 4. По заданной сеточной функции составить интерполяционный многочлен определенной степени. При выборе степени многочлена следует руководствоваться желаемой точностью интерполяции.

Легко проверить, что 4. Тогда интерполяционный многочлен Лагранжа n-й степени имеет вид. Для записи интерполяционного многочлена Лагранжа удобно пользоваться табл. Тогда многочлен Лагранжа может быть записан в форме. При введении дополнительных узлов интерполяции все коэффициенты многочлена Лагранжа необходимо пересчитывать заново, что неудобно на практике.

От этого недостатка свободны многочлены Ньютона. Построить многочлен Лагранжа третьей степени для сеточной функции, заданной табл. Для записи многочлена использовать формулу 4. Для этого составим табл. Вычислим значение функции в заданной точке: Для сеточных функций с фиксированными узлами сетки узлами интерполяции также можно проводить оценки погрешности по формулам 4.

При этом следует учитывать, что при вычислении производных высокого порядка возникают большие погрешности. Однако для дискретных функций, рассматриваемых в данном разделе, эта теорема не применима. Кроме того, применение многочленов высоких степеней приводит к так называемым "провалам" между узлами интерполяции, часто называемым осцилляциями.

Указанные свойства интерполяционных процессов обусловливают нецелесообразность применения интерполяционных многочленов высоких степеней. В этом случае функциональная интерполяция называется линейной или параболической квадратичной соответственно. Рассмотрим возможные способы их реализации и найдем оценки их погрешностей.

Путем суммирования проверить правильность полученных значений коэффициентов:. Геометрическая интерпретация параболической интерполяции изображена на рис.

Приведем оценки погрешностей линейной и параболической интерполяции. Для получения мажорант в оценке 4. Таким образом, реализуются следующие оценки погрешностей линейной и параболической интерполяции, справедливых для соответствующих "окон":.

Таким образом, из оценок 4. Указанные свойства, вытекающие из оценок 4. При этом можно путем использования кусочной интерполяции в некоторых пределах изменять степень интерполяционного многочлена. Мажоранту в оценке 4.

В широком классе задач математической физики применяются расчетные схемы в основном второго и иногда третьего и выше порядка точности. При их реализации, как правило, используются встроенные интерполяционные алгоритмы, основанные на многочленах и сплайн-функциях. Степени интерполяционных многочленов при этом должны выбираться из условия соответствия порядков их аппроксимации порядкам точности схем.

Если эти порядки одинаковы, то порядок точности схем сохраняется, хотя константа в оценке погрешности схемы изменяется.

Если же порядок встроенных интерполяционных алгоритмов хотя бы на единицу выше порядка точности схемы, то вместе с порядком точности схемы сохраняется и указанная константа.

Отсюда следует, что необходимо выбирать такую степень интерполяционного многочлена, которая либо обеспечивает равенство порядка аппроксимации порядку точности схемы, либо на единицу превышает последний.

Таким образом, использование параболической интерполяции в качестве встроенных алгоритмов или для восполнения численных решений, полученных по схемам второго порядка, позволяет сохранить требуемую точность расчета, а также не дает избыточный порядок и, следовательно, не усложняет алгоритм. Это замечание носит общий характер и относится к любым аппроксимационным алгоритмам, выполняющим функцию восполнения или интерполирования.

Применение параболической интерполяции с осреднением. Также воспользуемся соответствующей методикой. Искомое значение получим в результате осреднения: Разделенные и конечные разности. В практике функционального интерполирования иногда удобнее использовать многочлены Ньютона, степень которых можно последовательно повышать путем добавления очередных слагаемых, имеющих более высокую степень.

Такие несимметричные многочлены, альтернативные симметричным многочленам Лагранжа, основаны на разделенных и конечных разностях, вычисляемых по интерполируемой сеточной функции. Таким образом, связь 4. Тогда для функциональной интерполяции может быть использован многочлен Ньютона, основанный на разделенных разностях:. Тогда интерполяционный многочлен Ньютона n-й степени имеет вид.

Интерполяционный многочлен Ньютона 4. Это иногда упрощает алгоритм интерполирования. При интерполяции на основе 4. Остаточное слагаемое многочлена 4. Сначала рассмотрим решение задачи кусочной интерполяции применение кусочного способа.

В связи с этим 4. Для определенности назовем его первым интерполяционным многочленом Ньютона. Остаточное слагаемое этого многочлена имеет вид. Для гладких функций при повышении порядка конечных разностей справедливо свойство: Построить многочлен Ньютона третьей степени для сеточной функции, заданной табл. Решить задачу интерполяции при включении одного дополнительного значения сеточной функции: Построим многочлен Ньютона 4.

Поскольку в данной задаче заданы равностоящие узлы, воспользуемся также формулой 4. Сравнивая с результатом примера 4. Это еще раз подтверждает единственность решения задачи интерполяции в классе многочленов, удовлетворяющих условиям теоремы 4.

Тогда для решения задачи интерполяции с помощью многочлена Ньютона можно использовать уже полученный результат. Для этого дополним табл. Новый узел и соответствующее значение функции поместим в конце табл. Для сеточной функции из примера 4. Это подтверждает единственность решения задачи о построении интерполяционного многочлена.

Таким образом, найдена фактическая погрешность, которая для квадратичной интерполяции получилась в 4 раза меньше. Заметим, что фактическая погрешность получилась примерно в два раза меньше априорной. Для сеточной функции, заданной в примере 4.

Тогда по формуле 4. В результате подстановки получаем. Математический форум Math Help Planet Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел. Алгоритмы поиска Алгоритмы сортировки Уникальные элементы массива Объединение, пересечение и разность массивов НОД и НОК Операции над матрицами.

Алгебра высказываний Аксиоматика и логические рассуждения Методы доказательств теорем Алгебра высказываний и операции над ними Формулы алгебры высказываний Тавтологии алгебры высказываний Логическая равносильность формул Нормальные формы для формул высказываний Логическое следование формул Приложение алгебры высказываний для теорем Дедуктивные и индуктивные умозаключения Решение логических задач Принцип полной дизъюнкции.

Множества, отношения и функции в логике Булевы функции от одного и двух аргументов Булевы функции от n аргументов Системы булевых функций Применение булевых функций к релейно-контактным схемам Релейно-контактные схемы в ЭВМ Практическое применение булевых функций. Формализованное исчисление высказываний Полнота и другие свойства формализованного исчисления высказываний Независимость системы аксиом формализованного исчисления высказываний. Логика предикатов Логические операции над предикатами Кванторные операции над предикатами Формулы логики предикатов Тавтологии логики предикатов Преобразования формул и следование их предикатов Проблемы разрешения для общезначимости и выполнимости формул Применение логики предикатов в математике Строение математических теорем Аристотелева силлогистика и методы рассуждений Принцип полной дизъюнкции в предикатной форме Метод полной математической индукции Необходимые и достаточные условия Логика предикатов и алгебра множеств Формализованное исчисление предикатов.

Неформальные аксиоматические теории Свойства аксиоматических теорий Формальные аксиоматические теории Формализация теории аристотелевых силлогизмов Свойства формализованного исчисления предикатов Формальные теории первого порядка Формализация математической теории.

Интуитивное представление об алгоритмах Рекурсивные функции Нормальные алгоритмы Маркова Разрешимость и перечислимость множеств Неразрешимые алгоритмические проблемы Теорема Гёделя о неполноте формальной арифметики.

Математическая логика и языки программирования Применение компьютеров для доказательства теорем математической логики Математическая логика и логическое программирование Математическая логика и информатика Математическая логика и искусственный интеллект. Множества и отношения Теория множеств: Алгебраические структуры и операции Группоиды, полугруппы, группы Кольца, тела, поля Области целостности в теории колец Модули и линейные пространства Подгруппы и подкольца Теорема Лагранжа о порядке конечной группы Гомоморфизмы групп и нормальные делители Гомоморфизмы и изоморфизмы колец Алгебра кватернионов.

Булевы функции и булев куб Таблицы булевых функций и булев оператор Равенство булевых функций. Фиктивные переменные Формулы и суперпозиции булевых функций Дизъюнктивные и конъюнктивные нормальные формы Построение минимальных ДНФ Теорема Поста и классы Критерий Поста Схемы из функциональных элементов. Конечные автоматы и регулярные языки Алфавит, слово, язык в программировании Порождающие грамматики грамматики Хомского Классификация грамматик и языков Регулярные языки и регулярные выражения Конечные автоматы Допустимость языка конечным автоматом Теорема Клини Детерминизация конечных автоматов Минимизация конечных автоматов Лемма о разрастании для регулярных языков Обоснование алгоритма детерминизации автоматов Конечные автоматы с выходом Морфизмы и конечные подстановки Машины Тьюринга.

Контекстно-свободные языки и грамматики Приведенная форма КС-грамматики Лемма о разрастании для КС-языков Магазинные автоматы автомат с магазинной памятью Алгоритм построения МП-автомата по КС-грамматике Алгоритм построения КС-грамматики по МП-автомату Алгебраические свойства КС-языков Основное свойство суперпозиции КС-языков Пересечение контекстно-свободных языков Методы синтаксического анализа КС-языков Восходящий синтаксический анализ и LR k -грамматики Семантика формальных языков Принцип индукции по неподвижной точке Графовое представление МП-автоматов.

Неопределённый и определённый Неопределенный и определенный интегралы Свойства интегралов Интегрирование по частям Интегрирование методом замены переменной Интегрирование различных рациональных функций Интегрирование различных иррациональных функций Интегрирование различных тригонометрических функций Определенный интеграл и его основные свойства Необходимое и достаточное условие интегрируемости Теоремы существования первообразной Свойства определенных интегралов Несобственные интегралы Интегральное определение логарифмической функции.

Вычисление площадей плоских фигур Площади фигур в различных координатах Вычисление объемов тел с помощью интегралов Объём тела вращения Вычисление длин дуг кривых Формулы длины дуги регулярной кривой Кривизна плоской кривой Площадь поверхности вращения тела.

Статические моменты и координаты центра тяжести Теоремы Гульдина—Паппа Вычисление моментов инерции Другие приложения интегралов в физике. Интеграл Ньютона-Лейбница Интеграл Римана Интеграл Лебега. Примеры вариационных задач Дифференциальное уравнение Эйлера Функционалы, зависящие от нескольких функций Задача о минимуме кратного интеграла.

Анализ эффективности Критерии и показатели эффективности предприятия Методы анализа эффективности деятельности Факторный анализ прибыли от операционной деятельности Анализ безубыточности предприятия Операционный рычаг и эффект финансового рычага Анализ и оценка состава, структуры и динамики доходов и расходов Анализ рентабельности и резервов устойчивого роста капитала Анализ распределения прибыли предприятия Анализ и оценка чувствительности показателей эффективности.

Финансовая устойчивость и долгосрочная платежеспособность Характеристика типов финансовой устойчивости. Финансовый анализ рыночной активности Методика анализа рыночной активности Анализ и оценка дивидендного дохода на одну акцию.

Инвестиции и инвестиционная деятельность предприятия Задачи финансового анализа инвестиций предприятия Учет фактора времени в инвестиционной деятельности Аннуитет и финансовая рента в инвестициях Учет фактора инфляции при инвестировании Оценка фактора риска инвестиционного проекта Методы оценки эффективности инвестиций Показатели эффективности инвестиционного проекта.

Концепция построения международных стандартов финансовой отчетности МСФО Экономическое содержание международных стандартов финансовой отчётности Цели и принципы оценки стоимости акций и активов компании Оценка акций и активов предприятия по справедливой стоимости Методы оценки справедливой стоимости акций предприятия Затратный подход к оценки стоимости компаний и акций Сравнительный подход к оценки стоимости предприятий и акций Доходный подход к оценке стоимости компании и акций Выбор ставки дисконтирования при инвестировании в акции Метод капитализации прибыли Сравнение подходов к оценке стоимости компаний и пакетов акций.

Форвардный контракт и цена Форвардная цена акции на бирже Цена форвардного контракта инвестора Форвардная цена акции с учетом величины дивиденда Форвардная цена акции с учетом ставки дивиденда Форвардная цена валюты на рынке форекс Форвардный валютный курс и инфляция на рынке Форвардная цена товара и спотовый рынок Форвардная цена при различии ставок по кредитам и депозитам Синтетический форвардный контракт на акции и валюту.

Основные понятия теории вероятностей Зависимые и независимые случайные события Повторные независимые испытания Формула Бернулли Одномерные случайные величины Многомерные случайные величины Функции случайных величин Законы распределения целочисленных случайных величин Законы распределения непрерывных случайных величин Предельные теоремы теории вероятностей Закон больших чисел и предельные теоремы Вероятностные закономерности.

Элементы математической статистики Выборочный метод Оценки параметров генеральной совокупности Статистические гипотезы Критерии согласия Теоретические и эмпирические частоты. Определение системы массового обслуживания Уравнения Колмогорова Предельные вероятности состояний Определение СМО с отказами Определение СМО с ожиданием очередью. Векторная алгебра Метрические понятия и аксиомы геометрии Равенство и подобие геометрических фигур Бинарные отношения Вектор, его направление и длина Линейные операции над векторами Линейная зависимость и независимость векторов Отношение коллинеарных векторов Проекции векторов на прямую и на плоскость Угол между векторами Ортогональные проекции векторов Координата вектора на прямой и базис Координаты вектора на плоскости и базис Координаты вектора в пространстве и базис Операции над векторами в координатной форме Ортогональный и ортонормированный базисы Cкалярное произведение векторов и его свойства Выражение скалярного произведения через координаты векторов Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства Ориентированные площади и объемы Двойное векторное произведение и его свойства Применение векторов в задачах на аффинные свойства фигур Применение произведений векторов при решении геометрических задач Применение векторной алгебры в механике.

Прямоугольные координаты Преобразования прямоугольных координат Полярная система координат Цилиндрическая система координат Сферические координаты Аффинные координаты Аффинные преобразования координат Аффинные преобразования плоскости Примеры аффинных преобразований плоскости Аффинные преобразования пространства Многомерное координатное пространство Линейные и аффинные подпространства Скалярное произведение n-мерных векторов Преобразования систем координат.

Алгебраические линии на плоскости Общие уравнения геометрических мест точек Алгебраические уравнения линий на плоскости Уравнения прямой, проходящей через точку перпендикулярно вектору Уравнения прямой, проходящей через точку коллинеарно вектору Уравнения прямой, проходящей через две точки Уравнения прямой с угловым коэффициентом Взаимное расположение прямых Примеры задач с прямыми на плоскости Системы неравенств с двумя неизвестными Системы линейных уравнений с двумя неизвестными.

Канонические уравнения линий второго порядка Порядок приведения уравнения линии к каноническому виду Эллипс Гипербола Парабола Квадратичные неравенства с двумя неизвестными Применение линий 1-го и 2-го порядков в задачах на экстремум функций.

Классификация линий 2-го порядка по инвариантам Приведение уравнения линии к каноническому виду по инвариантам. Способы задания ГМТ в пространстве Алгебраические уравнения поверхностей Уравнения плоскости, проходящей через точку перпендикулярно вектору Уравнения плоскости, компланарной двум неколлинеарным векторам Уравнения плоскости, проходящей через три точки Взаимное расположение плоскостей Типовые задачи с плоскостями Уравнения прямых в пространстве Взаимное расположение прямых в пространстве Типовые задачи с прямыми в пространстве.

Канонические уравнения поверхностей Порядок приведения уравнения поверхности к каноническому виду Поверхности второго порядка Эллипсоиды Гиперболоиды Конусы Параболоиды Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций. Классификация поверхностей 2-го порядка по инвариантам Квадратичные неравенства с тремя неизвестными Приведение уравнения поверхности к канониче-скому виду по инвариантам.

Матрицы и операции Линейные операции над матрицами Умножение матриц Возведение матриц в степень Многочлены от матриц Транспонирование и сопряжение матриц Блочные матрицы Произведение и сумма матриц Кронекера Метод Гаусса приведения матрицы к ступенчатому виду Элементарные преобразования матриц.

Определители матриц и их основные свойства Формула полного разложения определителя Формула Лапласа полного разложения определителя Определитель произведения матриц Методы вычисления определителей. Линейная зависимость и линейная независимость строк столбцов матрицы Ранг матрицы и базисный минор матрицы Методы вычисления ранга матрицы Ранг системы столбцов строк. Обратные матрицы и их свойства Ортогональные и унитарные матрицы Способы нахождения обратной матрицы Матричные уравнения Односторонние обратные матрицы Скелетное разложение матрицы Полуобратная матрица Псевдообратная матрица.

Системы линейных алгебраических уравнений Метод Гаусса решения систем линейных уравнений Структура общего решения системы уравнений Решение систем с помощью полуобратных матриц Псевдорешения системы линейных уравнений. Функциональные матрицы скалярного аргумента Производные матриц по векторному аргументу Линейные и квадратичные формы и их преобразования Приведение форм к каноническому виду Закон инерции вещественных квадратичных форм Знакоопределенность форм вещественных квадратичных Формы и исследование функций на экстремум.

Многочленные матрицы лямбда-матрицы Операции над лямбда-матрицами Простые преобразования многочленных матриц Инвариантные множители многочленной матрицы. Собственные векторы и значения матрицы Подобие числовых матриц Характеристический многочлен матрицы Минимальный многочлен матрицы Теорема Гамильтона-Кэли Жорданова форма матрицы Приведение матрицы к жордановой форме Многочлены от матриц Применение многочленов от матриц Функции от матриц.

Подпространства линейного пространства Пересечение и сумма подпространств Способы описания подпространств Нахождение дополнения и суммы подпространств Нахождение пересечения подпространств. Линейные многообразия Линейные отображения Матрица линейного отображения Ядро и образ линейного отображения. Линейные операторы преобразования Инвариантные подпространства Собственные векторы и значения оператора Свойства собственных векторов операторов Канонический вид линейного оператора Методика приведения линейного преобразования к каноническому виду.

Евклидовы пространства Ортогональные векторы евклидова пространства Ортогональный базис евклидова пространства Ортонормированный базис евклидова пространства Ортогональные дополнения в евклидовом пространстве Задача о перпендикуляре Матрица и определитель Грама и его свойства Линейные преобразования евклидовых пространств Канонический вид ортогонального оператора евклидова пространства Сопряженные операторы евклидова пространства Самосопряженные операторы евклидова пространства Приведение квадратичной формы к главным осям Унитарные пространства и их линейные преобразования.

Комплексные числа Комплексные числа в алгебраической форме Комплексные числа в тригонометрической и показательной формах Множества на комплексной плоскости Последовательности и ряды комплексных чисел.

Предел, непрерывность и производная Элементарные функции комплексного переменного Дифференцирование функций комплексного переменного Аналитические функции и их свойства Конформные отображения и их свойства Интегрирование функций комплексного переменного.

Функциональные ряды и последовательности Степенные ряды и их свойства Разложение функций в степенные ряды Нули аналитических функций Ряд Лорана и разложение функций по целым степеням. Изолированные особые точки функций и полюсы Вычеты и их применение Вычисление интегралов с помощью вычетов Вычеты и расположение нулей многочлена. Преобразование Лапласа и его свойства Решение ДУ операционным методом Анализ выходных процессов линейных стационарных систем Z-преобразование и его свойства. ДУ первого порядка Основные понятия и определения ДУ Метод изоклин для ДУ 1-го порядка Метод последовательных приближений ДУ с разделяющимися переменными Однородные ДУ Линейные ДУ 1-го порядка Дифференциальное уравнение Бернулли ДУ в полных дифференциалах Интегрирующий множитель ДУ, не разрешенные относительно производной Дифференциальное уравнение Риккати Составление ДУ семейств линий Задачи на траектории Особые решения ДУ.

Понятия и определения ДУ высших порядков ДУ, допускающие понижение порядка Линейная независимость функций Определители Вронского и Грама Однородные и неоднородные дифференциальные уравнения Задача Коши и Уравнение Эйлера Линейные ДУ с переменными коэффициентами Метод Лагранжа решения ДУ Краевые задачи для ДУ высших порядков Разложение решения ДУ в степенной ряд Разложение решения ДУ в обобщенный степенной ряд Нахождение периодических решений ДУ Асимптотическое интегрирование ДУ.

Устойчивость решений ДУ по Ляпунову Простейшие типы точек покоя Метод функций Ляпунова Устойчивость решений ДУ по первому приближению Критерии устойчивости Рауса—Гурвица и Михайлова ДУ с малым параметром при производной. Методы алгебры Численные методы линейной алгебры Численные методы решения СЛАУ Итерационный метод Шульца обратной матрицы Методы решения задач о собственных значениях и векторах матрицы Методы решения нелинейных уравнений Методы решения систем нелинейных уравнений.

Задачи на Pascal

Методы приближения сеточных функций Методы функциональной интерполяции Методы интегрально-дифференциальной интерполяции Методы интегрального сглаживания Методы интерполяции и сглаживания сплайнами Методы численного дифференцирования и интегрирования Методы численного дифференцирования Методы численного интегрирования. Численные методы решения задачи Коши Разностные схемы для решения задачи Коши Составные схемы для решения задачи Коши Экстраполяционные методы решения задачи Коши Непрерывно-дискретные методы решения задачи Коши Численные методы решения краевых задач.

Погрешность интерполяции многочленами Лагранжа. Сходимости функционального интерполяционного процесса для непрерывных функций. Линейная и параболическая интерполяция с помощью многочлена Лагранжа. Методика решения задачи линейной интерполяции. Методика решения задачи параболической интерполяции.

Интерполяционный многочлен Ньютона для неравномерной сетки. Интерполяционные многочлены Ньютона для равномерной сетки. Фиктивные переменные Формулы и суперпозиции булевых функций Дизъюнктивные и конъюнктивные нормальные формы Построение минимальных ДНФ Теорема Поста и классы Критерий Поста Схемы из функциональных элементов Конечные автоматы и регулярные языки Конечные автоматы и регулярные языки Алфавит, слово, язык в программировании Порождающие грамматики грамматики Хомского Классификация грамматик и языков Регулярные языки и регулярные выражения Конечные автоматы Допустимость языка конечным автоматом Теорема Клини Детерминизация конечных автоматов Минимизация конечных автоматов Лемма о разрастании для регулярных языков Обоснование алгоритма детерминизации автоматов Конечные автоматы с выходом Морфизмы и конечные подстановки Машины Тьюринга Контекстно-свободные языки Контекстно-свободные языки и грамматики Приведенная форма КС-грамматики Лемма о разрастании для КС-языков Магазинные автоматы автомат с магазинной памятью Алгоритм построения МП-автомата по КС-грамматике Алгоритм построения КС-грамматики по МП-автомату Алгебраические свойства КС-языков Основное свойство суперпозиции КС-языков Пересечение контекстно-свободных языков Методы синтаксического анализа КС-языков Восходящий синтаксический анализ и LR k -грамматики Семантика формальных языков Принцип индукции по неподвижной точке Графовое представление МП-автоматов Интегральное исчисление Неопределённый и определённый Неопределенный и определенный интегралы Свойства интегралов Интегрирование по частям Интегрирование методом замены переменной Интегрирование различных рациональных функций Интегрирование различных иррациональных функций Интегрирование различных тригонометрических функций Определенный интеграл и его основные свойства Необходимое и достаточное условие интегрируемости Теоремы существования первообразной Свойства определенных интегралов Несобственные интегралы Интегральное определение логарифмической функции Приложения интегралов Вычисление площадей плоских фигур Площади фигур в различных координатах Вычисление объемов тел с помощью интегралов Объём тела вращения Вычисление длин дуг кривых Формулы длины дуги регулярной кривой Кривизна плоской кривой Площадь поверхности вращения тела Интегралы в физике Статические моменты и координаты центра тяжести Теоремы Гульдина—Паппа Вычисление моментов инерции Другие приложения интегралов в физике Основные интегралы Интеграл Ньютона-Лейбница Интеграл Римана Интеграл Лебега Вариационное исчисление Примеры вариационных задач Дифференциальное уравнение Эйлера Функционалы, зависящие от нескольких функций Задача о минимуме кратного интеграла Финансовый анализ Анализ эффективности Критерии и показатели эффективности предприятия Методы анализа эффективности деятельности Факторный анализ прибыли от операционной деятельности Анализ безубыточности предприятия Операционный рычаг и эффект финансового рычага Анализ и оценка состава, структуры и динамики доходов и расходов Анализ рентабельности и резервов устойчивого роста капитала Анализ распределения прибыли предприятия Анализ и оценка чувствительности показателей эффективности Анализ устойчивости Финансовая устойчивость и долгосрочная платежеспособность Характеристика типов финансовой устойчивости Рыночная активность Финансовый анализ рыночной активности Методика анализа рыночной активности Анализ и оценка дивидендного дохода на одну акцию Инвестиционная деятельность Инвестиции: Предел, непрерывность и производная Элементарные функции комплексного переменного Дифференцирование функций комплексного переменного Аналитические функции и их свойства Конформные отображения и их свойства Интегрирование функций комплексного переменного Функциональные ряды в комплексной области Функциональные ряды и последовательности Степенные ряды и их свойства Разложение функций в степенные ряды Нули аналитических функций Ряд Лорана и разложение функций по целым степеням Особые точки, Вычеты Изолированные особые точки функций и полюсы Вычеты и их применение Вычисление интегралов с помощью вычетов Вычеты и расположение нулей многочлена Операционное исчисление Преобразование Лапласа и его свойства Решение ДУ операционным методом Анализ выходных процессов линейных стационарных систем Z-преобразование и его свойства Дифференциальные уравнения ДУ первого порядка Основные понятия и определения ДУ Метод изоклин для ДУ 1-го порядка Метод последовательных приближений ДУ с разделяющимися переменными Однородные ДУ Линейные ДУ 1-го порядка Дифференциальное уравнение Бернулли ДУ в полных дифференциалах Интегрирующий множитель ДУ, не разрешенные относительно производной Дифференциальное уравнение Риккати Составление ДУ семейств линий Задачи на траектории Особые решения ДУ ДУ высших порядков Понятия и определения ДУ высших порядков ДУ, допускающие понижение порядка Линейная независимость функций Определители Вронского и Грама Однородные и неоднородные дифференциальные уравнения Задача Коши и Уравнение Эйлера Линейные ДУ с переменными коэффициентами Метод Лагранжа решения ДУ Краевые задачи для ДУ высших порядков Разложение решения ДУ в степенной ряд Разложение решения ДУ в обобщенный степенной ряд Нахождение периодических решений ДУ Асимптотическое интегрирование ДУ Системы ДУ Системы ДУ: Погрешность интерполяции многочленами Лагранжа 4.

Сходимости функционального интерполяционного процесса для непрерывных функций 5. Линейная и параболическая интерполяция с помощью многочлена Лагранжа 6. Методика решения задачи линейной интерполяции 7. Методика решения задачи параболической интерполяции 8. Интерполяционный многочлен Ньютона для неравномерной сетки При решении задачи функциональной интерполяции и в ее приложениях требуется: Методика решения задачи интерполяции 1.

Перейдем к рассмотрению примеров решения задачи интерполяции на основе вышеизложенной методики. Рассмотрим часто использующиеся на практике линейную и параболическую интерполяцию. Методика решения задачи линейной интерполяции 1. Методика решения задачи параболической интерполяции 1. Путем суммирования проверить правильность полученных значений коэффициентов: Перейдем к рассмотрению примеров решения задач линейной и параболической интерполяции.

Многочлены Ньютона Разделенные и конечные разности. Тогда для функциональной интерполяции может быть использован многочлен Ньютона, основанный на разделенных разностях: Интерполяционные многочлены Ньютона для равномерной сетки Сначала рассмотрим решение задачи кусочной интерполяции применение кусочного способа.



 
002100
В освоении новой техники Вы поступаете так:
изучаете инструкцию
просите кого-нибудь помочь
полагаетесь на интуицию
© 2015 — 2017 «www.kbconsultants.ca» Документы на все случаи!